The First Ligand-assisted Stereoselective Wittig Reactions. Synthesis and Crystal Structure of the 3-Palladaindan-1-one, $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right]-6-(\mathrm{OMe})_{3}-2,3,4\right\}\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right]$

José Vicente, ${ }^{*} \dagger^{a}$ José-Antonio Abad, ${ }^{*} \ddagger^{a}$ Ralph Bergs, ${ }^{a}$ Peter G. Jones ${ }^{*} \S^{b}$ and Delia Bautista ${ }^{b}$
${ }^{a}$ Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Aptdo. 4021, E-30071 Murcia, Spain
${ }^{\text {b }}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Reactions of $\left[\mathrm{Pd}\left(\mathrm{R}^{H}\right) \mathrm{Cl}(\mathrm{L}-\mathrm{L})\right] \quad\left[\mathrm{R}^{H}=\mathrm{C}_{6} \mathrm{H}(\mathrm{CHO})-6-(\mathrm{OMe})_{3}-2,3,4\right]$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHR} \quad(\mathrm{R}=\mathrm{Ph}$ or 2-pyridyl) gave mixtures of the isomeric compounds $\left[\mathrm{Pd}\left(E-R^{\prime}\right) \mathrm{Cl}(\mathrm{L}-\mathrm{L})\right]$ and $\left[\mathrm{Pd}\left(Z-\mathrm{R}^{\prime}\right) \mathrm{Cl}(\mathrm{L}-\mathrm{L})\right]\left[\mathrm{R}^{\prime}=\right.$ $\mathrm{C}_{6} \mathrm{H}(\mathrm{CH}=\mathrm{CHPh})-6-(\mathrm{OMe})_{3}-2,3,4$ or $\left.\mathrm{C}_{6} \mathrm{H}\left\{\mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-2\right)\right\}-6-(\mathrm{OMe})_{3}-2,3,4\right]$ when $\mathrm{L}-\mathrm{L}=2,2^{\prime}-$ bipyridine or only the corresponding E isomers when $\mathrm{L}-\mathrm{L}=N . N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine; however, the complex $\left[\mathrm{Pd}\left(\mathrm{R}^{\mathrm{Me}_{6}}\right) \mathrm{Cl}(\right.$ tmeda $\left.)\right]\left[\mathrm{R}^{\mathrm{Me}_{e}}=\mathrm{C}_{6} \mathrm{H}\{\mathrm{C}(\mathrm{O}) \mathrm{Me}\}-6-(\mathrm{OMe})_{3}-2,3,4\right]$ reacts with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ to give $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right]-6-(\mathrm{OMe})_{3}-2,3,4\right\}\right.$ (tmeda) $]$.

Very few examples of ortho-alkenylaryl complexes are known. As far as we are aware, only one such palladium complex has been reported. ${ }^{1}$ These compounds could be important in the fields of non-linear optics ${ }^{2}$ or organometallic polymers. ${ }^{3}$ Since the Wittig reaction constitutes one of the most important and useful synthetic routes to alkenes, ${ }^{4}$ we have considered using this procedure for preparing ortho-alkenylaryl palladium complexes from the 6 -formyl- and 6-acetyl-2,3,4-trimethoxyphenyl derivatives we have recently reported. ${ }^{5-7}$ This Wittig reaction on a co-ordinated ligand has only been studied for a few cyclopentadienyl- or arene-iron, -chromium, -tungsten or -cobalt complexes. ${ }^{2,3}$ We report here the first application of this synthetic approach to the preparation of alkenylaryl complexes. The 2,3,4-trimethoxy substitution of the aryl moiety is a feature of organic molecules of pharmaceutical interest. ${ }^{8-10}$

The reaction of $\left[\mathrm{PdR}^{\mathrm{H}} \mathrm{Cl}(\right.$ bipy $\left.)\right]$ 1a [bipy $=2,2^{\prime}$-bipyridine; $\left.\mathrm{R}^{\mathrm{H}}=\mathrm{C}_{6} \mathrm{H}(\mathrm{CHO})-6-(\mathrm{OMe})_{3}-2,3,4\right]^{6}$ with the semistabilized ylide $\mathrm{Ph}_{3} \mathrm{Ph}=\mathrm{CHPh}{ }^{9}$, gives a mixture of the E - and Z-orthoalkenylarylpalladium complexes $\quad\left[\mathrm{Pd}\left(E-\mathrm{R}^{\mathrm{Ph}}\right) \mathrm{Cl}(\right.$ bipy $\left.)\right] \quad E-2$ $\left[\mathrm{R}^{\mathrm{Ph}}=\mathrm{C}_{6} \mathrm{H}(\mathrm{CH}=\mathrm{CHPh})-6-(\mathrm{OMe})_{3}-2,3,4\right]$ and $\left[\mathrm{Pd}\left(Z-\mathrm{R}^{\mathrm{Ph}}\right) \mathrm{Cl}-\right.$ (bipy)] $Z-2$ (see Scheme 1) in ratios that vary with the nature of the solvent and the base $[E: Z=3: 1$ in diethyl ether with $\mathrm{LiBu}{ }^{\text {n }} ; 1: 1$ in dichloromethane with $\left.\mathrm{KOBu}^{\text {t }}\right]$. The reaction of $\mathbf{1 a}$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-2\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ affords a $4: 1$ mixture of $\left[\mathrm{Pd}\left(E-\mathrm{R}^{\mathrm{py}}\right) \mathrm{Cl}(\right.$ bipy $\left.)\right] E-3\left[\mathrm{R}^{\mathrm{py}}=\mathrm{C}_{6} \mathrm{H}\left\{\mathrm{CH}=\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-2\right)\right\}-6-\right.$ (OMe) $\left.{ }_{3}-2,3,4\right]$ and $\left[\mathrm{Pd}\left(Z-\mathrm{R}^{\mathrm{py}}\right) \mathrm{Cl}(\right.$ bipy $\left.)\right] Z-3$ (see Scheme 1). We have been able to separate by crystallization and characterize the major isomers $E-2$ and $E-3 \|$ from these reactions. These

[^0]results are similar to those of the above-mentioned Wittig reactions of cyclopentadienyl or arene complexes with ylides. ${ }^{2,3}$ The dependence of the isomeric ratio on reaction conditions and on the nature of the solvent is also well known in organic Wittig reactions. ${ }^{4}$

In order to study the influence of the neutral ligand in these reactions, the compound $\left[\mathrm{PdR}^{\mathrm{H}} \mathrm{Cl}(\right.$ tmeda $\left.)\right]$ 1b $[$ tmeda $=$ $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine] was treated with $\mathrm{Ph}_{3}-$ $\mathrm{P}=\mathrm{CHPh}$ giving selectively $\left[\mathrm{Pd}\left(E-\mathrm{R}^{\mathrm{Ph}}\right) \mathrm{Cl}(\right.$ tmeda $\left.)\right] E-4 \|$ as the only isomer, using either $\mathrm{LiBu}^{\mathrm{n}}$ in $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{KOBu}^{\text {i }}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 1). Similarly, compound 1b reacts with $\mathrm{Ph}_{3} \mathrm{P}=$ $\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-2\right)$ giving $\left[\mathrm{Pd}\left(E-\mathrm{R}^{\mathrm{py}}\right) \mathrm{Cl}(\right.$ tmeda $\left.)\right] E-5{ }^{\|}$as the only isomer. It must be emphasized that the respective crude products obtained after removing the reaction solvent consist of OPPh_{3} and $E-4$ or $E-5$, and no signal attributable to Z isomers can be observed in the ${ }^{1} \mathrm{H}$ NMR spectra. In contrast, reactions of 3,4,5-trimethoxybenzaldehyde with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ give mixtures of E and Z isomers similar to those found in reactions with 1a ($E: Z$ ratio $=45: 55, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{KOBu}^{\prime} ; 2: 1, \mathrm{Et}_{2} \mathrm{O}-$ $\mathrm{LiBu}^{\text {n }}$).

In consequence, the different behaviours observed for $\mathbf{1 b}$ and 1a are due to the different nature of their N -donor ligands, which exert a dramatic modulating effect on the observed stereoselectivity. To the best of our knowledge, such an effect has not previously been observed. It has been reported that sterically hindered aldehydes give a significant increase in the Z-alkene; ${ }^{4}$ therefore, the moderate increase in the E isomer that results in reactions of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ with 1 a , compared to those with 3,4,5-trimethoxybenzaldehyde, could be due to an electronic effect that opposes the expected increase of the Z isomer, caused by replacement of an ortho-hydrogen atom by the more sterically demanding $\{\mathrm{PdCl}($ bipy $)\}$ moiety. This electronic effect must be considerably greater for the $\{\mathrm{PdCl}($ tmeda $)\}$ moiety to explain the stereoselective formation of $E-4$ and $E-5$.

The acetylaryl complex $\left[\mathrm{Pd}\left(\mathrm{R}^{\mathrm{Me}}\right) \mathrm{Cl}(\right.$ tmeda $\left.)\right] \mathbf{1 c}{ }^{7}\left[\mathrm{R}^{\mathrm{Me}}=\right.$ $\left.\mathrm{C}_{6} \mathrm{H}\{\mathrm{C}(\mathrm{O}) \mathrm{Me}\}-6-(\mathrm{OMe})_{3}-2,3,4\right]$ reacts differently with

Scheme 1 (i) $+\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{X}\right)-\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}, \mathrm{Et}_{2} \mathrm{O}, 20 \mathrm{~h}$, yield: $E-$ $2+Z-2,83 \%$; isolated $E-2,14 \% ; E-3+Z-3,79 \%$; isolated $E-3,19 \%$; isolated $E-4,65 \%$; isolated $E-5,43 \%$. (ii) $+\mathrm{NaOMe}-\mathrm{NaCl}-$ $\mathrm{MeOH}, \mathrm{MeOH}, 5 \mathrm{~min}$, yield: 87%
$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ giving $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right]-6-(\mathrm{OMe})_{3}-2,3,4\right\}-\right.$ (tmeda)] 6, i.e., the complex resulting from deprotonation of the acetyl group instead of the Wittig product (see Scheme 1). Complex 6 is, however, best obtained by treating lc with NaOMe . This is the first reported 3-metallaindan-1-one.

The crystal structure of $E-4$ (see Fig. 1) shows that the alkenyl group has the postulated E configuration.* The metal atom shows the expected square-planar co-ordination (mean deviation of five atoms $0.04 \AA$); the aryl group bonded to Pd is almost perpendicular (79°) to the co-ordination plane. The $\mathrm{Pd}-\mathrm{N}$ bond distances are significantly different, showing the greater trans influence of the aryl group compared to the chloro ligand; $\mathrm{Pd}-\mathrm{C}, \mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{C}=\mathrm{C}$ bond distances are normal. ${ }^{12}$ Surprisingly, both $\mathrm{Pd}-\mathrm{C}$ bond distances in complex 6 (see Fig. $2) \dagger$ are significantly longer than in complex E-4. The greater trans influence of the methylene than the aryl group is shown by the longer $\mathrm{Pd}-\mathrm{N}(2)$ bond compared to $\mathrm{Pd}-\mathrm{N}(1)$.

[^1]

Fig. 1 Crystal structure of $E-4$. Selected bond distances (\AA) and angles $\left(^{\circ}\right): \mathrm{Pd}-\mathrm{C}(11) 1.999(2), \mathrm{Pd}-\mathrm{N}(1) 2.169(2), \mathrm{Pd}-\mathrm{N}(2) 2.085(2), \mathrm{Pd}-\mathrm{Cl}$ $2.3220(7), \quad \mathrm{C}(1)-\mathrm{C}(12) \quad 1.470(3), \quad \mathrm{C}(1)-\mathrm{C}(2) \quad 1.325(3), \quad \mathrm{C}(2)-\mathrm{C}(21)$ $1.468(3) ; \quad \mathrm{N}(2)-\mathrm{Pd}-\mathrm{N}(1) \quad 84.23(8), \quad \mathrm{C}(11)-\mathrm{Pd}-\mathrm{Cl} \quad 90.00(6)$, $\mathrm{C}(11)-\mathrm{Pd}-\mathrm{N}(2) 92.92(8), \mathrm{N}(1)-\mathrm{Pd}-\mathrm{Cl} 92.78(6)$

Fig. 2 Crystal structure of 6 . Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: $\mathrm{Pd}-\mathrm{C}(1)$ 2.035(2), $\mathrm{Pd}-\mathrm{C}(2), 2.045(2), \mathrm{Pd}-\mathrm{N}(1)$ 2.165(2), $\mathrm{Pd}-\mathrm{N}(2)$ 2.195(2), C(7)-O(1) 1.226(3); N(2)-Pd-N(1) 82.83(7), C(1)-Pd-C(8) 79.90(8), $\mathrm{C}(8)-\mathrm{Pd}-\mathrm{N}(1) 93.45(8), \mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}(2) 103.61$ (7)

Acknowledgements

We thank Dirección General de Investigación Científica y Técnica (PB92-0982-C) and the Fonds der Chemischen Industrie for financial support and the Human Capital and Mobility research program of the Commission of the European Communities for a research training fellowship to R. B. (contract No. ERBCHBGCT920143). D. B. is grateful to Ministerio de Educación y Ciencia (Spain) for a grant.

References

1 R. G. Miller, R. D. Stauffer, D. R. Fahey and D. R. Parnell, J. Am. Chem. Soc., 1970, 92, 1511.
2 T. M. Gilbert, F. J. Hadley, C. B. Bauer and R. D. Rogers, Organometalics, 1994, 13, 2024 and refs. therein
3 E. J. Miller, C. A. Weigelt, J. A. Serth, R. Rusyid, J. Brenner, L. A. Luck and M. Godlewsky, J. Organomet. Chem., 1992, 440, 91 and refs. therein.
4 A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, 1993, ch. 8, pp. 221-306.
5 J. Vicente, J. A. Abad, M. A. Stiakaki and P. G. Jones, J. Chem. Soc., Chem. Commun., 1991, 137; J. Vicente, J. A. Abad, J. Gil-Rubio and P. G. Jones, Organometallics, 1995, 14, 2677.

6 J. Vicente, J. A. Abad and P. G. Jones, Organometallics, 1995, 14, 2677.

7 J. Vicente, J. A. Abad, J. Gil-Rubio, P. G. Jones and E. Bembenek, Organometallics, 1993, 12, 4151.
8 F. E. Ziegler, I. Chliwner, K. W. Fowler, S. J. Kanfer, S. J. Kuo and N. D. Sinha, J. Am. Chem. Soc., 1980, 102, 790; K. Tomioka, T. Ishiguro, H. Mizuguchi, N. Komeshima, K. Koga, S. Tsukagoshi, T. Tsuruo, T. Tashiro, S. Tanida and T. Kishi, J. Med. Chem., 1991, 34, 54, and refs. therein.
9 J. H. Chan and B. Roth, J. Med. Chem., 1991, 34, 550 and refs. therein.

10 I. Ringel, D. Jaffe, S. Alerhand, O. Boye, A. Muzafar and A. Brossi, J. Med. Chem., 1991, 34, 3334.

11 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.
12 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1; F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.

Received 12th June 1995; Communication 5/03790E

[^0]: \dagger E-Mail: JVS@FCU.UM.ES.
 \ddagger E-Mail: JAAB@FCU.UM.ES.
 § E-Mail: P.JONES aTU-BS.DE.
 9 The ylides $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHPh}$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-2\right)$ were prepared in situ by reaction of the corresponding phosphonium chlorides with $\mathrm{LiBu}^{\mathrm{n}}$ in $\mathrm{Et}_{2} \mathrm{O}$, or KOBu^{1} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and were not isolated.
 Satisfactory elemental analyses were obtained for all complexes. Spectroscopic data are in agreement with the proposed structures.

[^1]: ${ }^{*} \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{Pd}$, monoclinic, $P 2_{1} / c, a=7.736(2), b=14.389(3)$, $c=21.134(5) \AA, \beta=92.58(2)^{\circ}, U=2350.2 \AA^{3}, Z=4, D_{c}=1.490 \mathrm{Mg}$ $\mathrm{m}^{-3}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA, \mu=0.9 \mathrm{~mm}^{-1}$. An orange tablet $0.8 \times 0.6 \times 0.3 \mathrm{~mm}$ was mounted on a Stoe STADI-4 diffractometer fitted with a Siemens LT-2 low-temperature device. A total of 4574 intensities was recorded at 143 K to $2 \theta_{\max } 50^{\circ}$. After absorption corrections (ψ scans), 4153 unique reflections were used for all calculations. Structure refinement ${ }^{11}$ on F^{2} to $w R\left(F^{2}\right) 0.058$, conventional $R(F) 0.024$ for 278 parameters ($S 1.09$; max. $\Delta \rho 0.34 \mathrm{e} \AA^{-3}$). $\dagger \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}, \quad$ monoclinic, $\quad P 2_{1} / n, \quad a=10.8570(14), \quad b=$ $11.3205(10), c=15.2970(14) \AA, \beta=95.933(8)^{\circ}, U=1870.0 \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.530 \mathrm{Mg} \mathrm{m}^{-3}, \mu=1.0 \mathrm{~mm}^{-1}$. Yellow prism, $0.7 \times 0.35 \times 0.3$ mm , Siemens P4 diffractometer with LT-2 low-temperature device, 3472 intensities at $173 \mathrm{~K}, 3271$ unique; $w R\left(F^{2}\right) 0.047, R(F) 0.019$ for 224 parameters ($S 1.05$; max. $\Delta \rho 0.35 \mathrm{e}^{-3}$). Other details as for $E-4$. Atomic coordinates, thermal parameters and bond lengths and angles for both structures have been deposited at the Fachinformationszentrum Karlsruhe [reference numbers CSD 401888 (E-4), 404026 (6)]. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. $\mathrm{xxv}-\mathrm{xxx}$.

